Воздушная и костная проводимость звука. Воздушная проводимость звука. Что такое аудиограмма

Содержание

грамма слуха: построение графика, определение порогов, нормы и отклонения

Воздушная и костная проводимость звука. Воздушная проводимость звука. Что такое аудиограмма

В нашем мире на сегодняшний момент очень распространены вирусные заболевания. Чаще всего при поражении ими человеческого организма в первую очередь страдают носоглотка и уши.

Часто встречаются такие заболевания, как неврит слухового нерва, инсульт с поражением слуховой коры, опухоли и кисты головного мозга, случаются травмы, при которых происходит нарушение слуха. Также распространены тугоухость, вызванная профессиональной деятельностью и врожденные заболевания слухового аппарата. Все эти болезни диагностируются и лечатся врачом.

Тональная пороговая аудиометрия

Тональная пороговая аудиометрия осуществляется при помощи аудиометров, которые производятся многими фирмами и отличаются друг от друга по функциональным возможностям и по возможностям управления.

В них предусмотрен набор частот 125, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 6000, и 8000 Гц (в некоторых аудиометрах дополнительно введены частоты 10000, 12000, 16000, 18000 и 20000 Гц и имеется возможность переключения частот шагом в 67,5 Гц).

Стимулом является чистый тон (или узкополосный шум). Переключение интенсивности подаваемых стимулов производится шагом в 5 дБ от 0 дБ нПС (нПС — нормальные пороги слышимости) до 110 дБ нПС (в некоторых аудиометрах до 120 дБ).

Имеются аудиометры, обеспечивающие и возможность переключения интенсивностей шагом в 1 и 2 дБ. Однако во все аудиометры введено ограничение интенсивности на выходе на трех частотах: 125 Гц, 250 Гц и 8000 Гц.

метры оснащены оголовьем с двумя воздушными телефонами (некоторые аудиометры укомплектованы внутриушным телефоном), костным вибратором для исследования костного звукопроведения, кнопкой пациента, микрофоном и имеют низкочастотный вход для подключения магнитофона (или проигрывателя компакт-дисков) для проведения речевой аудиометрии.

Условия, необходимые для проведения тестов: в идеале, проведение аудиометрии требует специального звукозаглушенного помещения. В случае, когда исследование проводится в условиях, не соответствующих требованиям, аудиометрист должен помнить, что окружающий шум может оказывать влияние на результаты аудиометрии, что выражается в повышении определяемых порогов слышимости.

Существует два пути решения проблемы уменьшения окружающего шума: использование звукозаглушенных   камер   и использование специальных амбушюров или внутриушных телефонов.

Внутриушные телефоны были разработаны для повышения точности аудиометрических исследований. Их применение обеспечивает существенные преимущества:

  • окружающий шум снижается на 30-40 дБ;
  • повышается комфортность пациента;
  • за счет увеличения межушного ослабления до 70-100 дБ снижается необходимость в использовании маскирующего шума;
  • повышается степень повторяемости результатов тестирования;
  • исключается возможность коллапса наружного слухового прохода, что принципиально важно при исследовании слуха у новорожденных.

Порогом считается наименьшая интенсивность, воспринимаемая испытуемым в 50% предъявлений. Исследование начинается с лучше слышащего уха. Если испытуемый не может определить, какое ухо слышит лучше, обычно исследование начинают с правого уха.

В основе методики определения порогов по воздушному звукопроведению лежит предъявление чистого тона одной частоты (обычно начинают с частоты 1000 Гц) при каждом исследовании, начиная с интенсивности, легко идентифицируемой испытуемым.

Постепенно снижается уровень интенсивности стимуляции (нисходящая методика) шагом в 10 дБ до исчезновения его восприятия. Уровень интенсивности затем повышается шагом в 5 дБ до возникновения слухового ощущения (восходящая техника).

Для точного определения порогов эти операции повторяются. Значения порога наносятся на бланк аудиограммы.

грамма

грамма — это графическое отражение способности испытуемого слышать чистые тоны. Принято предъявлять тоны различных частот в следующей последовательности: 1000, 2000, (3000), 4000, (6000), 8000, 500, 250, 125 Гц.

На горизонтальной оси аудиограммы отмечены частоты, соответствующие частотам аудиометра. По вертикальной оси откладывается интенсивность стимула в дБ по отношению к нормальным порогам слышимости, от -10 дБ нПС (в верхней части аудиограммы) до 110-120 дБ нПС у основания.

Вертикальные линии на аудиограмме отражают частоты, соответствующие частотам аудиометра. Горизонтальные линии на аудиограмме отражают интенсивность в дБ по отношению к нормальным порогам слышимости, от 0 дБ нПС (в верхней части аудиограммы) до 110 дБ у основания аудиограммы.

Методика определения порогов по костному звукопроведению обеспечивает прямое определение чувствительности улитки, а также возможное наличие кондуктивного компонента (костно-воздушного интервала) на каждой из исследуемых частот. Вместо воздушных телефонов при исследовании используется костный вибратор, устанавливаемый на сосцевидном отростке.

Так же, как и при определении порогов при воздушном звукопроведении, порогом является наименьшая интенсивность, воспринимаемая испытуемым в 50%.

Рекомендации по предъявлению частот при исследовании порогов по костному звукопроведению те же, что и по воздушному.

Следует начинать с частоты 1000 Гц, продолжая на частотах 2000 Гц и 4000 Гц, а затем — на 500 Гц и 250 Гц.

В большинстве аудиометров не предусмотрена возможность определения костных порогов на частотах 125 Гц, 6000 Гц и 8000 Гц (хотя в некоторых современных аудиометрах имеется частота 6000 Гц).

грамма при нормальном слухе

Определение порогов на костнопроведенные звуки (КЗ) должно начинаться с надпороговых интенсивностей с последующим снижением интенсивности до достижения порога и повторением всех этапов, применяемых при определении порогов по воздушному звукопроведению (ВЗ). В норме пороги воздушного и костного звукопроведения совпадают и находятся в пределах 5-10 дБ.

грамма больного с кондуктивной тугоухостью

При патологии среднего уха нарушается передача звуковых сигналов от наружного к внутреннему уху, поэтому пороги слышимости при воздушном звукопроведении в той или иной степени повышаются. В то же время при костном звукопроведении сигналы воспринимаются при нормальных уровнях интенсивности, т.к. рецепторный аппарат улитки и нервные слуховые пути сохранены.

Разность между значениями порогов слышимости, определенными при воздушном и костном звукопроведении, отражается на аудиограмме в виде костно-воздушного интервала.

В большинстве случаев при кондуктивной тугоухости определяется повышение порогов слышимости на воздушнопроведенные звуки на низких частотах. Так, при экссудативном среднем отите пороги повышаются на низких частотах на 20-40 дБ.

Повышение порогов как для воздушнопроведенных, так и для костнопроведенных звуков имеет место при смешанной тугоухости.

Следует помнить, что пороги при КЗ не могут быть выше порогов, определенных при ВЗ.

Кроме того, при значительном повышении порогов по ВЗ, а также при некоторых видах патологии костей черепа (например, сифилитический пороз) вполне допустимо отсутствие восприятия костнопроведенных звуков. Это объясняется различием в максимальной выходной интенсивности телефона (110-120 дБ) и костного вибратора (45-70 дБ, в зависимости от частоты).

Ошибочная аудиограмма

грамму, характеризующуюся повышением порогов по ВЗ в пределах 45 дБ, но с отсутствием КЗ на тех же частотах, следует считать ошибочной.

Эффективная маскировка исключает переслушивание. При помощи эффективной маскировки определяется уровень шума, необходимый для заглушения нетестируемого или лучше слышащего уха.

Недостаточная маскировка имеет место, когда маскирующий шум, предъявленный в лучше слышащее ухо, недостаточно громкий для того, чтобы исключить эффект переслушивания. Больной слышит тон в ухе, которое маскируется (в нетестируемом ухе) одновременно с маскирующим шумом.

Увеличение интенсивности маскирующего шума ведет к исключению определения «ложных» порогов в нетестируемом ухе и определению истинных порогов слышимости в тестируемом ухе.

Сверхмаскировка проявляется в том случае, когда каждая прибавка в интенсивности маскировки в 10 дБ вызывает повышение порога слышимости на 10 дБ или более над плато. Сверхмаскировка имеет место, как правило, при определении порогов при воздушном звукопроведении.

Ниже приводятся некоторые наиболее типичные аудиограммы, получаемые при нарушении звукопроведения.

грамма больного отосклерозом

Кондуктивная тугоухость с дополнительным повышением порогов при костном звукопроведении в области 2 кГц (т. н. «зубец Кархарта») характерна для отосклероза.

Постановку диагноза облегчают данные анамнеза (постепенное снижение слуха с одной стороны с дальнейшим переходом в двустороннюю тугоухость, шум в ушах, улучшение разборчивости речи в шуме) и отоскопии (неизмененные или истонченные барабанные перепонки).

грамма больного адгезивным средним отитом

Обратная картина — кондуктивная тугоухость с понижением порога в области 2 кГц — нередко наблюдается при рубцовом, адгезивном процессе в барабанной полости. Данные анамнеза и отоскопии подтверждают диагноз.

грамма больного с сенсоневральной тугоухостью

При сенсоневральной тугоухости (поражении сенсорных элементов органа Корти) и отсутствии сопутствующего нарушения звукопроведения пороги слышимости по воздушному и костному звукопроведению совпадают.

грамма больного, работающего в условиях шума и вибрации

Сенсоневральная тугоухость, характеризующаяся двусторонним локальным повышением порогов звуковосприятия в области 4 кГц, часто является следствием воздействия шума и (или) вибрации.

грамма больного с гидропсом лабиринта (болезнью Меньера)

Весьма характерна аудиограмма при болезни Меньера. В основе заболевания лежит гидропс лабиринта, приводящий к нарушению функции волосковых клеток. Поэтому пороги звуковосприятия равномерно повышаются до 50-60 дБ на всех частотах как при ВЗ, так и при КЗ.

В ряде случаев отмечается незначительный костно-воздушный интервал в области низких частот. Он обусловлен нарушением звукопроведения во внутреннем ухе. метрические кривые расположены горизонтально.

ДП по Люшеру (1000 Гц): AD = 0,4дБ; AS= 1,0 дБ; SISI (1000 Гц): AD = 100%; AS = 0%. В начальных стадиях болезни Меньера, когда большая часть волосковых клеток сохранена, значительное ухудшение слуха происходит лишь в момент приступа.

В межприступном периоде внутрилабиринтное давление нормализуется и слух улучшается, т. е. тугоухость носит флуктуирующий характер. В дальнейшем рецепторный аппарат внутреннего уха претерпевает необратимые изменения, и слух прогрессивно ухудшается от приступа к приступу.

Международная классификация степеней тугоухости, основанная на усредненных значениях порогов звуковосприятия на частотах 0,5; 1; 2 и 4 кГц, представлена в таблице.

Степень тугоухостиСреднее значение порогов слышимости на речевых частотах (дБ)
I26-40
II41-55
III56-70
IV71-90
Глухота91 и более

Как расшифровать аудиограмму — подробное руководство от врача

Сегодня мы разбираемся, как расшифровать аудиограмму. В этом нам помогает Светлана Леонидовна Коваленко — врач высшей квалификационной категории, главный детский сурдолог-оториноларинголог Краснодара, кандидат медицинских наук.

Краткое изложение

Статья получилось большой и подробной — чтобы понять, как расшифровать аудиограмму, надо сначала познакомиться с основными терминами аудиометрии и разобрать примеры. Если у вас нет времени долго читать и разбираться в деталях, в карточке ниже — краткое изложение статьи.

грамма — график слуховых ощущений пациента. Она помогает диагностировать нарушения слуха.

На аудиограмме две оси:

  1. горизонтальная — частота (количество звуковых колебаний в секунду, выражается в герцах),
  2. вертикальная — интенсивность звука (относительная величина, выражается в децибелах).

Источник: https://storm24.media/news/141333

Как слушать без ушей: мифы и факты о костной проводимости звука — Технологии на TJ

Воздушная и костная проводимость звука. Воздушная проводимость звука. Что такое аудиограмма

Всем привет! Сегодня я хотел бы подробно рассказать о простой, но до сих пор для некоторых «удивительной» особенности нашего слуха и показать ввозимую нами продукцию. Речь пойдёт о костной проводимости звука.

Два способа слышать

Говоря совсем примитивно, у человека «несколько ушей»: внутреннее, среднее и наружное. Они делятся визуально на «торчит» и «не торчит». Один из привычных способов воспринимать звук для нас — по воздуху, но есть и другие способы.

Звук способен распространяться в твёрдых телах: когда вы слышите соседей за стеной, это не значит, что дом строили кое-как, это значит, что бетон —неплохой проводник звука. Иными словами, мы можем получать звук, отправленный непосредственно к внутреннему уху, минуя воздушную проводимость. Это называется костная проводимость.

Бетховен

Считается, что самым ярким примером применения такой технологии, исторически значимым, было творчество композитора Людвига Бетховена. Если верить викиавторам, пишущим на английском, то толком неясно, чем именно Бетховен болел. Однако экспонаты в его музее намекают на то, что часть произведений «глухим» композитором была написана «через кость».

Экспонаты в музее Бетховена

Бетховен прикладывал к височной кости подобные трубки или закусывал их зубами, чтобы слышать звуки фортепиано. Достоверно утверждать, какую роль в усиление слуха сыграла именно костная проводимость, сложно, но без неё точно не обошлось.

Медики

Медицина довольно быстро открыла этот способ и на долгие годы присвоила его себе. При определённых нарушениях слуха, кондуктивной тугоухости, двусторонней артезии наружного прохода, микротии и некоторых других индивидуальных особенностях такой способ слышать, через кость, остаётся единственным.

Мальчик с микротией в наушниках Aftershokz

Долгое время проблемой оставалось то, что медицинские устройства с пассивной костной проводимостью как бы «не дотягивали» по качеству передачи звука.

Под пассивной костной проводимостью понимается «чрескожная» стимуляция, которая не требует хирургического вмешательства. Под активной — «транскожная», которая невозможна без операции. Несмотря на позитивную статистику операций, риски всё-таки были.

Имплантируемый аппарат с костной проводимостью

Операция по вживлению слуховых аппаратов с костной проводимостью проходила в несколько этапов: сперва вживлялся титановый штифт (титан в кости — открытие стоматологов, лучшая «приживаемость»). Затем какое-то время наблюдалась динамика (от месяца до полугода), потом интегрировался процессор и приёмник. Долго, дорого и относительно безопасно. Детям не рекомендуется!

Лишь в последнее десятилетия разработки в области пассивной костной проводимости позволили сделать ряд практичных, в том числе непосредственно детских слуховых устройств (ADHEAR, Oticon), которые по качеству и надёжности не уступают имплантам.

Зачем это читать, если нет проблем со слухом?

Зелёный свет на потребительском рынке для костной проводимости загорелся после представления Google Glass.

Динамик с костной проводимостью в дужке

Динамик на базе данной технологии был интегрирован в дужку очков, и многие подумали, а почему бы и нет, а как ещё? Тогда же наметились и первые лидеры: на рынке потребительских гарнитур с костной проводимостью — это компания Aftershokz, которая присутствует на отечественном рынке уже несколько лет нашими усилиями.

В первую очередь — это спортивные наушники. Основной тезис, с которым разработчики обратились к людям: костная проводимость — это способ повысить собственную безопасность во время тренировок. Фокус был направлен на велосипедистов и бегунов.

Главное преимущество таких гарнитур — они не закрывают уши, и пользователь слышит всё, что происходит вокруг, может реагировать на сигналы автомобиля, но при этом иметь музыку «на фоне» или ответить на звонок.

В дальнейшем из сугубо спортивной ниши, компания двинулась в сторону туризма, экстремального туризма, где может быть необходимость держать уши открытыми, оставаясь на связи с друзьями, коллегами, но при этом есть потребность в гарнитуре.

Что-то еще?

Везде, где нет задачи получать в конкретный момент эстетического наслаждения от музыки, использование таких гарнитур — большой плюс. Так слушать музыку безопаснее для слуха.

Есть точка зрения, озвученная в учебнике «Компьютер для людей с ограниченными возможностями», что такие наушники создавались для людей, «зависимых» от музыки, чтобы глубокий бас не наносил ущерба слуху.

Всё-таки наши кости куда более прочные, чем барабанные перепонки.

В городе, во время прогулок, — пожалуйста. За рулем автомобиля в качестве гарнитуры тоже можно. Просмотр сериалов, фильмов — отличное решение. Особенно для молодых родителей, которым важно не прослушать ребенка, который спит в соседней комнате. Можно послушать аудиокниги.

Также гарнитуры с костной проводимостью звука приживутся в офисе в качестве рабочего инструмента: удобно общаться по рабочим вопросам и оставаться на связи с коллегами, чтобы не прослушать позывной на обед.

Так как звук идёт не по воздуху, такую технологию “переложили” для дайверов для того, что загерметизировать костную проводимость. Используется она и в армии, где важно контролировать обстановку и принимать приказы.

Китч

Мимо не прошли юмористы от гаджетов: буквально недавно, на минувшей IFA несколько спорных проектов.

Браслет для часов с костной проводимостью звука, который позволит общаться по телефону с помощью пальца. Проще говоря, технологии превратит ваш палец в динамик.

Аналогичного назначения смарт-кольцо с интегрированным передатчиком на базе костной проводимости.

Бейсболка с полей краудфандинга, которая передаёт музыку через кости к внутреннему уху.

И целый ряд других «инновационных технологий», которые доказывают, что костная проводимость и полезный способ, и забавная особенность нашего организма.

Музыку через палец (даже через локоть) действительно слушать можно: наши кости хороший проводник, поэтому всё зависит только от мощности сигнала. Например, мощности Aftershokz хватает действительно до локтя. Вы просто прислоняете динамики к кости и через палец слушаете любимые треки. Ну а чем ближе, тем лучше звук.

Как это работает

На самом деле, всё просто. В основе гарнитур и других устройств с костной проводимостью звука лежит пьезодинамик, на него подается переменный ток в такт сигналу, и это вызывает колебания, что для нас — звук.

Самые примитивные пьезодинамики выглядят примерно так:

Наушник с костной проводимостью можно сделать за 10 минут, обладая такой пластинкой и свободным временем, Качество будет ниже среднего, но это же эксперимент.

У пьезоизлучателей есть ряд особенностей, которые тиражируются, судя по всему теми, кто редко пользовался наушниками. У них плохой звук, нет басов, плохая изоляция и так далее. Поэтому пришло время для мифов и фактов.

Мифы и факты о костной проводимости звука

Начнём со звука. Он действительно другой. Сравнивать с привычными наушниками — дело неблагодарное, так как он не хуже, не лучше — это просто другой способ передачи и восприятия.

Вероятно те, кто стремятся сравнивать звук, параллельно сравнивают и бумажные книги с электронными, и цифровые часы с аналоговыми, и всё остальное на общих основаниях. Звук в костях «затухает» быстрее, чем в воздухе, поэтому до слуха не всегда доходят низкие частоты, которые, к тому же, воспроизводят далеко не все пьезодинамики. Это правда.

Утверждение, что наушники на базе костной проводимости «не могут в басы» — это миф.

Мнение, что у всех наушников с костной проводимостью проблемы с утечкой звука — это не совсем правда. У всех наушников открытого типа такая проблема, если говорить справедливо. Утверждение, что все окружающие будут слышать, что у меня звучит — это миф.

Заявление, что такой способ небезопасен и «раздробит» кости черепа — это миф. Костная проводимость: безопасный способ восприятия звука, просто не самый привычный, на высоких громкостях ощутимы колебания (вибрация), однако сама по себе технология не опасна для человека.

Всю жизнь звук собственного голоса вы воспринимаете через кости. Заткните уши, скажите пару слов, вы же слышите себя? Это правда.

Басы, утечка и Aftershokz

Сейчас вас ждёт небольшая рекламная вставка. Несколько лет мы (Medgadgets) возим в Россию гарнитуры Aftershokz, и об особенностях звука я постараюсь рассказать на примере флагманской гарнитуры — Trekz Titanium.

В отличие от большинства гарнитур на базе костной проводимости, даже внутри линейки, Trekz — лучшие по звуку. Они покрывают почти весь слышимый человеком диапазон.

Воспользовавшись «бытовыми» тестами наушников в сети, например, на , можно убедиться, что гарнитура начинает звучать между 30-35 Гц и затихает примерно на 17000. С басом в костной проводимости всё несколько сложнее: это не возможность услышать бас, а возможность его почувствовать. Глубокий бас будет отдаваться «ударами», вибрацией, и эта идея, кстати, не баг, а фича.

Ровно для того, чтобы дать возможность пользователю ощутить как бы присутствие на концерте, был создан, например, рюкзак SubPac, достаточно известный и дорогой проект.

Про утечку звука также есть что возразить. Потребительские тесты показывают, что звук неразличим для посторонних при комфортной громкости для слушателя — около половины. Например, в пригородной электричке сосед напротив не слышит то, что звучит в наушниках или не различает. Но так не везде. Даже Aftershokz шли к этому несколько лет. Сравните, как раздаёт звук первая беспроводная версия:

Первая версия беспроводных

Версия Aftershokz Bluez 2S с технологией LeakSlayer

В гарнитурах здорово резонировал корпус, и он был хорошо слышен окружающим. Однако позднее появилась технология LeakSlayer, которая также присутствует и в Trekz Titanium. Она заключается в том, что из специальных отверстий по бокам динамика идёт противофаза, образуя, формально «ноль звука».

Эти обратные колебания и гасят звук, который выдавал корпус раньше.

Компенсирует ли это утечку звука — безусловно. И эта находка до сих пор доступна не всем. Например, многие недорогие китайские гарнитуры по-прежнему этой особенностью не обладают. KsCat, к примеру, сегодня делает то, что Aftershokz делал несколько лет назад.

Решило ли это проблему утечки звука — нет. Наушники по-прежнему остаются наушниками открытого типа, но если сравнить их по этому параметру с другими устройствами, например, такими:

То утечка звука будет примерно на одном уровне. Некоторые пользователи формулируют претензию ещё более странно: мол, лежат на столе и всё слышать. Насколько целесообразно оценивать утечку не надетых наушников, — вопрос спорный, но тем не менее:

Trekz

Другие беспроводные наушники

Чем еще интересны

Модель Trekz Titanium остаётся флагманом по звуку и характеристикам изоляции, плюс первопроходцем внутри линейки в области проектирования корпуса — он гибкий и надёжный, практически неубиваемый.

Вы можете буквально завязать его в узел, но они вернутся в исходную форму. Модель имеет простое управление с вынесенными на корпус кнопкам и высокую автономию (до 7 часов непрерывного звука).

Гарнитуры давно успешно зарекомендовали себя в различных областях, оставаясь в первую очередь спортивными наушниками, которым доверяют и любители, и профессионалы. Одно время линейка была даже представлена в фирменных магазинах Apple, но это время давно миновало.

Сейчас модельный ряд включает несколько проводных и беспроводных моделей наушников и гарнитур, лучшими из которых, на мой взгляд, пока остаётся модель Trekz Titanium. Если вы заинтересованы в данной технологии и в конкретных наушниках в частности, то мы можем предложить купон на скидку 2000 рублей от текущей цены: PDKD7D.

Эпилог

Хотя модель Trekz по ряду параметров лучшая, она не единственная, а сама по себе технология используется не только в наушниках. Они же реально помогают слышать больше, реагировать на окружающие звуки, воспринимать музыку или общаться по телефону.

Они не закрывают уши, и эта особенность применима в различных условиях. Если не анализировать сложных медицинских случаев, то это – спорт и город в первую очередь, а дальше уже индивидуальные особенности работы или хобби.

К сегодняшнему дню технология сильно прокачана: она умеет воспроизводить достойный диапазон частот без искажений, компенсировать утечку звука и быть удобнее. Например, если накладные наушники неплотно надеты, то завывание ветра в ушах и ненужный свист — гарантированы, а с костной проводимостью это исключено.

Использовать это в жизни или нет — тут уж под задачи. Но то, что количество проектов (пусть иногда странных) растёт от выставки к выставке, говорит о том, что ниша гаджетов на базе данной технологии постепенно оформляется.

Источник: https://tjournal.ru/tech/62234-kak-slushat-bez-ushey-mify-i-fakty-o-kostnoy-provodimosti-zvuka

метрия: что это такое и как проводится – Сайт о заболеваниях глаз и их лечении

Воздушная и костная проводимость звука. Воздушная проводимость звука. Что такое аудиограмма

метрия, что это такое? метрия — это процедура по установке наличия остроты слуха. С ее помощью определяется чувствительность слухового аппарата к разным частотам звуковых волн. Такой анализ производит только врач-сурдолог (исключительно в медицинском учреждении).

ВАЖНО ЗНАТЬ! Гадалка баба Нина: «Денег всегда будет в избытке, если под подушку положить…» Читать подробнее >>

Виды манипуляций

Специалисты различают компьютерную, речевую, тональную, игровую аудиометрию. Компьютерная манипуляция — это самый информативный метод диагностики слуха.

Основывается он на различных безусловных рефлексах, возникающих во время слухового раздражения. КМ применяется у пациентов с любым диагнозом и в любом возрасте, включая новорожденных деток.

Весь процесс автоматизирован. Безусловные реакции, которые исследуются:

  • рефлекс моргания — звуковое раздражение вызывает сокращение века;
  • зрачково-улитковый рефлекс — раздражение звуком провоцирует расширение зрачка;
  • аудиопальпебральный рефлекс — при резком звуке смыкаются веки;
  • электрическая активность кожи — меняется электропроводимость кожи;
  • реакция сердечно-сосудистой системы — меняется давление, частота сердечных сокращений, частота пульса;
  • у новорожденных детей замедляется сосательный рефлекс.

Такая аудиометрия выполняется для точного анализа состояния больных, которые перенесли инсульт, травмы головы, с наличием опухолей, кист, гематомам. Компьютерная методика эффективна, если подозревается ухудшение слышимости ребенка.

Применение речевой методики

Речевая аудиометрия — это процедура, которая применяется в медицине для обследования деток и взрослых. Во время ее проведения врач должен отойти от пациента на расстояние до 6м и шепотом произнести слова. При этом пациент обязан повторить их. Недостатки метода:

  • возможная симуляция плохого слуха;
  • невозможность отследить разницу между слышимостью левого и правого уха.

В последнее время этот метод применяется для проверки нормальной работы слухового аппарата. Произносят стандартный универсальный набор слов.

Тональная аудиометрия аналогична речевому обследованию. Единственное различие заключается в том, что вместо слов пациент слышит звуки. Частотность звуковой волны постепенно повышается, человек должен зажать кнопку в тот момент, когда услышит звук.

Для ребенка это проходит во время игры. Диапазон колеблется от 25.000 до 8.000Гц. После получения результатов строится аудиограмма, которая показывает частотный диапазон, который он слышит. В домашних условиях перед малышом нужно хлопнуть в ладоши.

Преимущества данного метода:

  • выявление нарушений слуха в определенной частоте;
  • различие чувствительности левого и правого уха.

Недостаток — наличие дискомфорта во время проведения анализа. Как и в речевом методе, можно обмануть результаты, нажав кнопку позже.

Дополнительные способы

Игровая аудиометрия показана деткам. Так как маленьких пациентов невозможно усадить на длительное время в спокойном положении, ученые разработали игровую форму проверки слуха.

Он проводится для вырабатывания двигательных рефлексов, которые ребенок использует ежедневно. Необходимо усадить его, всеми способами попытаться завлечь игрушкой, картинкой.

Специалист должен простимулировать рефлекторные движения, к примеру, разложить бусы, произвести включение светильника, клацнуть яркую кнопку.

Скрининговая аудиометрия проводится с помощью аудиометра — это самый простой аппарат, предоставляющий огромную возможность для обследования слуха.

Скрининг предоставляет мощи для проведения тональной диагностики с помощью воздушной звукопроводимости. Так происходит определение диапазона слышимости ушей больного. Возможно автоматический, механический варианты теста.

Дополнительно анализируются результаты уровня способности комфортного восприятия звука.

Оборудование кабинета

Обследование состояния функций анализатора слуха проводится не исключительно с помощью камертона, шепота, а с применением аудиометрии, чтобы получить аудиограмму. Поэтому в медицинском учреждении существует обязанность создания специализированного помещения:

  • предусматривается кабина со звукоизоляцией;
  • место работы для врача;
  • возможность видения лица пациента, для этого в наличии должно быть специальное окно со стеклом;
  • место обследуемого находится возле окна.

При невозможности организации специального кабинета процедуру можно провести в самом кабинете у ЛОР-врача. Для этого необходимо:

  • обеспечить отличную звукоизоляцию;
  • входную дверь оборудовать уплотняющими прокладками;
  • наличие аудиометра (специальный прибор) разных вариантов (тональный, надпороговый).

Наличие таких приборов обязательно для оценки восприятия звуковых волн исследуемого (на объективном, субъективном уровнях), чтобы получить результаты реакции безусловного рефлекса на звуки, изменения центральной нервной структуры вне активности человека.

Показатели проверки слуха

Результат, который записывается в аудиограмму (специальный бланк), имеет вид кривой (в отдельности двух ушей), полученной во время проведения воздушного и костного звуков. При проведении обследования фиксируются следующие данные:

  • горизонтально — частотность тонов (Гц);
  • вертикально — сила интенсивности тональности (Дб) в соотношении среднего нормального порога слуха, принимая их за ноль;
  • правое ухо, его порог, обозначается в виде кружочка;
  • левое — крестиком;
  • кривую правого уха рисуют красным цветом;
  • левого уха — синим цветом;
  • само значение слухового порога увеличивается сверху вниз, то есть чем больше ухудшается слышимость, тем все ниже опускается пороговый предел на кривой аудиограмме;
  • при воздушной проводимости на графике линия сплошная;
  • костная проводимость изображается пунктирной линией.

У абсолютно здорового человека, не имеющего проблем со слухом, график аудиограммы выглядит плоско.

Ее расположение находится на пределе 25 — 30 дБ — это норма. В пожилом возрасте люди теряют возможность воспринимать высокие звуки. Из-за этого в обеих кривых происходит опущение с правого края — первый признак слуховых ухудшений. Пройти аудиограмму следует каждому человеку для предотвращения развития глухоты.

Когда происходит ухудшение слуховой чувствительности?

Причины ухудшения слуха у детей и взрослых связаны с травмами акустического характера. Возникают они в случае повреждения внутренней части уха вследствие сильнейшего звукового воздействия. Причины:

  • длительное воздействие звуков от 6.000 ГГц;
  • работа, связанная с наличием выстрелов.

Болезнь начинается с развития тугоухости (односторонней, двусторонней). Появляется звон в ухе, чувство головокружения, теряется способность слышать окружающие звуки. Может произойти кровотечение из ушной раковины. Лопается барабанная перепонка. Предварительно воспринимается только громкая речь.

Вестибулярная невринома приводит к ухудшению слуха. Новообразование состоит из шванновых клеток. Невриному можно диагностировать с помощью проведения рентгена костей височной области, магниторезонансной терапии и компьютерной томографии головного мозга. Лечение напрямую зависит от размера опухоли.

Отоспонгиоз — это разрастание лабиринтной капсулы в кости, вследствие этого нарушается подвижность костей в среднем ухе. Симптоматика заболевания:

  • шумовые явления, которые связаны с изменениями сосудистого и обменного процессов в улитке. Он слабой интенсивности;
  • головокружение встречается изредка, если возникает, то очень быстро проходит;
  • ушная боль следствие активного роста ткани. Болезненность распирающая, область сосцевидного отростка. Вследствие приступа происходит снижение слуховой активности.

Для постановки точного диагноза аудиометрия проводится в комплексе с другими методиками обследования.

Источник: https://cliniceye.ru/otit/audiometriya-chto-eto-takoe-i-kak-provoditsya.html

Что такое аудиометрия слуха

Воздушная и костная проводимость звука. Воздушная проводимость звука. Что такое аудиограмма
метрия – это измерение остроты слуха. грамма – это и есть результаты аудиометрии, записанные в виде графика.

Способность слышать – одна из важнейших предоставленных человеку возможностей.  С помощью слуха люди общаются с родными, наслаждаются любимой музыкой, узнают о чрезвычайном положении. Его отсутствие может послужить причиной эмоциональных срывов и физических недугов.

Подобно зрению, проверка слуха осуществляется специальными приборами, а ее результаты обозначаются особыми единицами. Это необходимо для универсализации и возможности расшифровать результаты проверки, где бы Вы не находились, чтобы определить степень потери слуха.

Характеристики звука

Звук имеет две основные характеристики, имеющие значение при проведении исследования: частота и интенсивность.

Интенсивность определяется силой звука, иначе говоря, его громкостью. Для ее обозначения принята относительная единица – децибелл (дБ).

Например, обычная домашняя обстановка – это около 50 дБ (сюда включена негромкая работа телевизора и бытовой техники). Обычный разговор – 60 дБ, рок-концерт сопоставим со 120 дБ, а звук выстрела достигает 140 дБ и может вызвать болезненные ощущения. Длительное воздействие звуков, превышающих по интенсивности 85 дБ, может привести к снижению слуха.

Частота звука, то есть количество звуковых колебаний в секунду, измеряется в герцах (Гц). Диапазон частот можно поделить на низкие (менее 500 Гц), средние (500-4000 Гц) и высокие (свыше 4000 Гц). Обычная речь расположена в диапазоне средних частот.

Что такое аудиометрия и аудиограмма?

метрия – это измерение остроты слуха. Исследование обычно происходит следующим образом: пациенту в наушниках подаются сигналы различной интенсивности и частоты, а он должен каким-либо образом подавать сигнал об услышанном звуке. Обычно это нажатие кнопки, поднятие руки или перекладывание предметов в детском возрасте.

грамма – это и есть результаты аудиометрии, записанные в виде графика. Для каждого уха составляется по 2 отрезка: для костной проводимости и воздушной. Воздушная проводимость – это непосредственное восприятие звукового сигнала, костная – это способность костей черепа улавливать и передавать звуковые вибрации. По вертикали обычно откладывается интенсивность звука, а по горизонтали – частота.

При отсутствии проблем со слухом аудиограммы обоих ушей представляют собой два отрезка, которые лежат в диапазоне от 0 до 25 дБ на всех исследуемых частотах.

При отсутствии патологии между графиками костной и воздушной проводимости есть совсем небольшое пространство.

В случае наличия тугоухости расстояние между отрезками увеличивается, один из них или оба выходят за пределы нормальной слышимости.

Степени потери слуха

По результатам слухового тестирования можно определить степень нарушения слуха.

I степень, или легкая тугоухость, определяется на частотах 26-40 дБ. Человек достаточно хорошо слышит собеседника в тишине, однако разговоры в присутствии посторонних звуков становятся затруднительными.

II степень, тугоухость умеренной степени, определяется на частотах 41-55 дБ. При таком поражении человек часто просит собеседника повторяться, переспрашивает. Для коррекции легкой и умеренной тугоухости подходят стандартные слуховые аппараты.

III степень, или тугоухость тяжелой степени – ее графики расположены на частотах 56-70 дБ. В этом случае для общения необходим слуховой аппарат или вспомогательное слуховое устройство.

IV степень тугоухости – это глубокая потеря слуха. Она определяется на частоте свыше 71-95 дБ. Люди с такой степенью поражения едва способны услышать очень громкие звуки, а речь распознают при помощи языка жестов или только с помощью слуховых аппаратов и кохлеарных имплантов.

Слуховые тесты способен провести только квалифицированный специалист по слухопротезированию. Никогда не полагайтесь на результаты самопроверки или помощи сайтов и приложений. Это может привести к неверной диагностики и недооценке, что приведет к потере крайне важного времени и может послужить поводом для отсрочки обращения к врачу.

Отталкиваясь от показателей аудиограммы, в совокупности с предоставленной вами информацией об образе жизни, специалист подбирает оптимальную программу коррекции.

Борьба с потерей слуха – совместная работа, помогите вашему доктору сделать вашу жизнь счастливее. Ведь тугоухость, которую не подвергли лечению, чревата развитием множества сопутствующих проблем.

Среди них: депрессия, деменция и болезнь Альцгеймера.

Наш онлайн тест слуха, может послужить стартом для обнаружения у вас потери слуха. Обязательно обратитесь за помощью по поиску специалиста к своему ЛОР-врачу либо ознакомьтесь с нашим каталогом специалистов по слуху.

Источник: https://sluh.online/chto-takoe-audiometrija-sluha

Как расшифровать аудиограмму — подробное руководство от врача

Воздушная и костная проводимость звука. Воздушная проводимость звука. Что такое аудиограмма

Сегодня мы разбираемся, как расшифровать аудиограмму. В этом нам помогает Светлана Леонидовна Коваленко — врач высшей квалификационной категории, главный детский сурдолог-оториноларинголог Краснодара, кандидат медицинских наук.

Основные понятия аудиометрии

Чтобы понять, как расшифровать аудиограмму, сначала остановимся на некоторых терминах и самой методике аудиометрии.

У звука две основные физические характеристики: интенсивность и частота.

Интенсивность звука определяется силой звукового давления, которое у человека весьма вариабельно. Поэтому для удобства принято пользоваться относительными величинами, такими как децибелы (дБ) — это десятичная шкала логарифмов.

Частоту тона оценивают количеством звуковых колебаний в секунду и выражают в герцах (Гц). Условно диапазон звуковых частот делят на низкие — ниже 500Гц, средние (речевые) 500−4000Гц и высокие — 4000Гц и выше.

метрия — это измерение остроты слуха. Эта методика субъективна и требует обратной связи с пациентом. Исследующий (тот, кто проводит исследование) при помощи аудиометра подаёт сигнал, а исследуемый (слух которого исследуют) даёт знать, слышит он этот звук или нет. Чаще всего для этого он нажимает на кнопку, реже — поднимает руку или кивает, а дети складывают игрушки в корзину.

Существуют различные виды аудиометрии: тональная пороговая, надпороговая и речевая.

На практике наиболее часто применяется тональная пороговая аудиометрия, которая определяет минимальный порог слуха (самый тихий звук, который слышит человек, измеряемый в децибелах (дБ)) на различных частотах (как правило, в диапазоне 125Гц — 8000 Гц, реже до 12 500 и даже до 20 000 Гц). Эти данные отмечаются на специальном бланке.

грамма — график слуховых ощущений пациента. Эти ощущения могут зависеть как от самого человека, его общего состояния, артериального и внутричерепного давления, настроения и т. д., так и от внешних факторов — атмосферных явлений, шума в помещении, отвлекающих моментов и т. д.

Как строится график аудиограммы

Для каждого уха раздельно измеряют воздушную проводимость (через наушники) и костную проводимость (через костный вибратор, который располагают позади уха).

Воздушная проводимость — это непосредственно слух пациента, а костная проводимость — слух человека, исключая звукопроводящую систему (наружное и среднее ухо), её ещё называют запасом улитки (внутреннего уха).

Костная проводимость обусловлена тем, что кости черепа улавливают звуковые вибрации, которые поступают ко внутреннему уху. Таким образом, если имеется препятствие в наружном и среднем ухе (любые патологические состояния), то звуковая волна достигает улитки благодаря костной проводимости.

Бланк аудиограммы

На бланке аудиограммы чаще всего правое и левое ухо изображены раздельно и подписаны (чаще всего правое ухо слева, а левое ухо справа), как на рисунках 2 и 3.

Иногда оба уха отмечаются на одном бланке, их различают либо цветом (правое ухо всегда красным, а левое — синим), либо символами (правое кругом или квадратом (0—0—0), а левое — крестом (х—х—х)).

Воздушную проводимость всегда отмечают сплошной линией, а костную — прерывистой.

По вертикали отмечают уровень слуха (интенсивность стимула) в децибелах (дБ) с шагом в 5 или 10 дБ, сверху вниз, начиная от −5 или −10, а заканчивая 100 дБ, реже 110 дБ, 120 дБ.

По горизонтали отмечаются частоты, слева направо, начиная от 125 Гц, далее 250 Гц, 500Гц, 1000Гц (1кГц), 2000Гц (2кГц), 4000Гц (4кГц), 6000Гц (6кГц), 8000Гц (8кГц) и т. д., могут быть некоторые вариации.

На каждой частоте отмечается уровень слуха в децибелах, потом точки соединяют, получается график. Чем выше график, тем лучше слух.

Как расшифровать аудиограмму

При обследовании больного в первую очередь необходимо определить топику (уровень) поражения и степень слуховых нарушений. Правильно выполненная аудиометрия даёт ответ на оба этих вопроса.

Патология слуха может быть на уровне проведения звуковой волны (за этот механизм отвечает наружное и среднее ухо), такую тугоухость называют проводниковой или кондуктивной; на уровне внутреннего уха (рецепторный аппарат улитки), данная тугоухость является сенсоневральной (нейросенсорной), иногда бывает сочетанное поражение, такую тугоухость называют смешанной. Крайне редко встречаются нарушения на уровне слуховых проводящих путей и коры головного мозга, тогда говорят о ретрокохлеарной тугоухости.

Источник: http://eu-max.ru/blog/audiogram/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.